Abstract

Ophthalmic optical coherence tomography (OCT) has achieved remarkable clinical success but remains sequestered in ophthalmology specialty offices. Recently introduced robotic OCT systems seek to expand patient access but fall short of their full potential due to significant imaging workspace and motion planning restrictions. Here, we present a next-generation robotic OCT system capable of imaging in any head orientation or posture that is mechanically reachable. This system overcomes prior restrictions by eliminating fixed-base tracking components, extending robot reach, and planning alignment in six degrees of freedom. With this robotic system, we show repeatable subject imaging independent of posture (standing, seated, reclined, and supine) under widely varying head orientations for multiple human subjects. For each subject, we obtained a consistent view of the retina, including the fovea, retinal vasculature, and edge of the optic nerve head. We believe this robotic approach can extend OCT as an eye disease screening, diagnosis, and monitoring tool to previously unreached patient populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.