Abstract
Robot assisted rehabilitation training is a promising tool for post-stroke patients’ recovery, and some new challenges are imposed on robot design, control, and clinical evaluation. This paper presents a novel upper limb rehabilitation robot that can provide safe and compliant force feedbacks to the patient for the benefits of its stiff and low-inertia parallel structure, highly backdrivable capstan-cable transmission, and impedance control method in the workspace. The “assist-as-needed” (AAN) clinical training principle is implemented through the “virtual tunnel” force field design, the “assistance threshold” strategy, as well as the virtual environment training games, and preliminary clinical results show its effectiveness for motor relearning for both acute and chronic stroke patients, especially for coordinated movements of shoulder and elbow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.