Abstract
AbstractIn this paper, to address motor dysfunction caused by factors such as stroke or traffic accidents, a kind of upper limb rehabilitation robot is designed for rehabilitation training. The rehabilitation robot is driven by series elastic actuator (SEA) to make the upper limb rehabilitation robot have flexible output. Flexible output can improve the compliance and safety between the patient and the rehabilitation robot, but impedance control method is needed to ensure the compliance of human–robot interaction. In order to solve the human–robot interaction problem of SEA–based upper limb rehabilitation robot, the dynamic model and an impedance control are established for the SEA–based upper limb rehabilitation robot. The impedance control method of upper limb rehabilitation robot based on terminal position is designed in detail. Aiming at the designed impedance control method, a numerical simulation model is established for the upper limb rehabilitation robot, and the accuracy of the model is verified by the simulation of the upper limb rehabilitation robot. The numerical results show that the impedance controller can meet the needs of the rehabilitation training of the upper limb rehabilitation robot, which improves the coordination of human–robot interaction in the rehabilitation process.KeywordsUpper limb rehabilitation robotImpedance controlSeries elastic driver
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have