Abstract

All living organisms must go through cycles of replicating their genetic information and then dividing the copies between two new cells. This cyclical process, in cells from bacteria and human alike, requires a protein complex known as cohesin. Cohesin is a structural maintenance of chromosomes (SMC) complex. While bacteria have one form of this complex, yeast have several SMC complexes, and humans have at least a dozen cohesin complexes alone. Therefore the ancient structure and function of SMC complexes has been both conserved and specialized over the course of evolution. These complexes play roles in replication, repair, organization, and segregation of the genome. Mutations in the genes that encode cohesin and its regulatory factors are associated with developmental disorders such as Roberts syndrome, Cornelia de Lange syndrome, and cancer. In this review, we focus on how acetylation of cohesin contributes to its function. In Roberts syndrome, the lack of cohesin acetylation contributes to nucleolar defects and translational inhibition. An understanding of basic SMC complex function will be essential to unraveling the molecular etiology of human diseases associated with defective SMC function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.