Abstract

Robert J. P. Williams was a pioneer in advancing our understanding of the roles of chemical elements, especially the metals, in biology and in biological evolution. During the first half of his career of more than 60 years at Oxford University he studied the thermodynamic stabilities of transition-metal complexes with organic ligands, their redox properties, magnetism and colour, to understand their biological function. In parallel he collaborated with biologists and biophysicists, for example with Bert Vallee, studying zinc in proteins. Williams was the first to describe how proton gradients could be used to drive the formation of the universal biological fuel, ATP (adenosine triphosphate), a fundamental step in biological energetics. From the late 1960s he studied many proteins that use metal ions for catalysis, for electron transfer and cellular regulation. A leading figure in the establishment of the Oxford Enzyme Group, Williams developed high-field nuclear magnetic resonance (NMR) to study the mobility and dynamics of many protein structures, leading to a deeper understanding of protein function. He held the Royal Society Napier Research Professorship from 1974 until his retirement in 1991. Subsequently he published several books setting out his understanding of the roles of metal ions in biology, and their wider significance in evolution. Bob Williams's deep insights across many disciplines made him a charismatic teacher. His lateral style of thinking never failed to inspire. His legacy lies in the successful careers of his many students and collaborators worldwide and the vigour of the new discipline of bioinorganic chemistry that he helped to establish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call