Abstract

Road extraction from satellite images has several Applications such as geographic information system (GIS). Having an accurate and up-to-date road network database will facilitate transportation, disaster management and GPS navigation. Most active field of research for automatic extraction of road network involves semantic segmentation using convolutional neural network (CNN). Although they can produce accurate results, typically the models give up performance for accuracy and vice-versa. In this paper, we are proposing architecture for semantic segmentation of road networks using Atrous Spatial Pyramid Pooling (ASPP). The network contains residual blocks for extracting low level features. Atrous convolutions with different dilation rates are taken and spatial pyramid pooling is performed on these features for extracting the spatial information. The low level features from residual blocks are added to the multi scale context information to produce the final segmentation image. Our proposed model significantly reduces the number of parameters that are required to train the model. The proposed model was trained on the Massachusetts roads dataset and the results have shown that our model produces superior results than that of popular state-of-the art models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.