Abstract
Vision-based road extraction is essentially important in many fields, such as for intelligent traffic and robot navigation. However, the road detection in urban or ill-structured roads is still very challenging at current stage, and the existing methods often suffer from high computational complexity. This paper reports a novel and efficient method for road detection in challenging scenes. First, the dark channel based image segmentation is proposed to distinguish a rough road region from complex background noise, which is envisioned to reduce the workload of road detection. Furthermore, instead of using the conventional pixel-wise soft voting, a new voting strategy based on the vanishing point and the properties of the segmented regions is proposed to further reduce the computation time of road extraction stage. Finally, the segmented region which has the maximum voting value is selected as the road region. Experimental results demonstrated that the proposed algorithm shows superior performance in different kinds of road scenes. It can remove the interference from pedestrians, vehicles and other obstacles. Our method is about 40 times faster in detection speed, when compared to a recently well-known approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.