Abstract
Automatic lane detection is a classical task in autonomous vehicles that traditional computer vision techniques can perform. However, such techniques lack reliability for achieving high accuracy while maintaining adequate time complexity in the context of real-time detection in complex and dynamic road scenes. Deep neural networks have proved their ability to achieve competing accuracy and time complexity while training them on manually labeled data. Yet, the unavailability of segmentation masks for host lanes in harsh road environments hinders fully supervised methods’ operability on such a problem. This work proposes integrating traditional computer vision techniques and deep learning methods to develop a reliable benchmarking framework for lane detection tasks in complex and dynamic road scenes. Firstly, an automatic segmentation algorithm based on a sequence of traditional computer vision techniques has been experimented. This algorithm precisely segments the semantic region of the host lane in the complex urban images of nuScenes dataset used in this framework; hence corresponding weak labels are generated. After that, the developed data is qualitatively evaluated to be used in training and benchmarking five state-of-the-art FCN-based architectures: SegNet, Modified SegNet, U-Net, ResUNet, and ResUNet++. The performance evaluation of the trained models is done visually and quantitatively by considering lane detection a binary semantic segmentation task. The output results show robust performance, especially ResUNet++, which outperforms all the other models while testing them in different complex road scenes with dynamic scenarios and various lighting conditions.
Highlights
There has been an increasing interest in autonomous driving research because of its great impact on traffic management and the economy
After developing the labels based on nuScenes dataset, which contains the needed challenging scenes, a visual qualitative assessment was done to validate their reliability before being utilized in the deep learning approach
By proceeding in this framework, lane detection is recognized as a semantic segmentation task of two classes: lane or non-lane
Summary
There has been an increasing interest in autonomous driving research because of its great impact on traffic management and the economy. Autonomous vehicles mimic human driving by making decisions and performing intelligent operations like a lane change, collision avoidance, object detection, and lane departure warning [1], [2]. The accuracy of these intelligent decisions and operations has the potential to alleviate human driver’s burden and reduce traffic accidents that are almost entirely caused by human’s improper decisions and. Different artificial intelligence (AI) techniques enable autonomous vehicles to manage actions and take decisions based on various input data. Different actuators can perform physical output actions based on the taken intelligent decisions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.