Abstract

This paper discusses a new issue named domain generalization of fast motion planning in 3D environments, which benefits agility-required robot applications such as autonomous driving and uncrewed aerial vehicle obstacle avoidance flight. The existing work shows that conventional spatial search-based planning algorithms cannot meet the real-time requirement due to high time costs. The end-to-end neural network-based methods achieve an excellent balance between performance and planning speed in the seen environments, but are hard to transfer to new scenarios. To overcome this limitation, we propose a novel Robust Environment Encoder (Ro2En) approach to domain generalization of fast motion planning. Specifically, by demonstrating the reconstructed environment, we find that the previous environment encoder cannot encode the volume information properly, i.e., a volume collapse ensues, which leads to noisy environment modeling. Inspired by this observation, a dual-task auto-encoder is developed. It can not only reconstruct the point cloud of the obstacles, but also align their geometric centers. Experiment results showed that in the new scenarios, Ro2En outperformed previous state-of-the-art conventional and neural alternatives with a much smaller performance variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.