Abstract

Electronic components and LEDs used in lighting products have started to work in more and more limited volumes due to aesthetic concerns and design. This has led to the demand for increasingly higher luminous intensity from LEDs. This causes the operating temperature of the LEDs to increase. Therefore, thermal management has become important for LEDs operating at high power. Natural convection method can be used frequently by using heat fins for cooling LEDs. In such cases, forced convection is an alternative solution. In this study, the comparison of natural convection and forced design in a sample fog light was made numerically. In natural convection, the design with fins to benefit from the outside air in the fog lights and the natural convection analysis where there is no design change, the analysis results were obtained by creating the fan definition in the forced design and the air velocity of 10 m/s. In addition, the heat transfer coefficient and temperature results at different fan speeds were obtained and verified with the literature. In the study, our analyzes were carried out by verifying with tests on a different geometry. In the analysis, independence from the number of elements was studied. Numerical analyzes were performed with ANSYS 2022 R2 software. Results were obtained at different fan speeds in forced discharge. While the results obtained in forced transport are confirmed by the literature. It has been determined that the forced convection performance is achieved in LED cooling with the original design and fin, and even better results are obtained with the fin effect. It has been determined in the study that while the LED Tj temperature is 170 °C in natural convection, it is 149 °C in forced convection, but with the design change and the addition of fins, the Tj value can be reduced to 133 °C in natural convection

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call