Abstract
BackgroundWhile photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels.ResultsHere, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants.In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa.ConclusionsFull heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
Highlights
IntroductionWhile photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources
While photosynthesis is the most notable trait of plants, several lineages of plants have adapted to obtain organic compounds from other sources
In E. aphyllum and H. monotropa, the corresponding values were approximately 10 and 5%, respectively. This difference may reflect the correlation between soil microbiome biomass and climate (E. aphyllum and H. monotropa were collected from colder regions than E. roseum)
Summary
While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. Some plants, including several thousands of flowering plant species, obtain organic substances from sources other than photosynthesis [1, 2]. These plants acquire organic compounds either from associated fungi (myco-heterotrophy) or by parasitizing other plants. Most of these species combine photosynthesis and heterotrophy, but several hundred species have totally lost photosynthetic ability and become fully heterotrophic. Advances in DNA sequencing permit the application of a genomic approach to elucidate the genetic changes associated with heterotrophy
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have