Abstract

Deletions or some mutations in the gene encoding the multifunctional protein, DJ-1, have been considered to be linked with autosomal recessive early onset Parkinson’s disease (PD). Current emerging evidence suggests that DJ-1 is involved in the protection against oxidative stress-induced mitochondrial damage. However, the exact molecular mechanisms underlying this are not completely clear. The aim of this study was to investigate the effects of DJ-1 on the Akt pathway, nuclear factor erythroid 2-related factor (Nrf2), and c-Jun N-terminal kinase (JNK) with regard to modulating mitochondrial function. Here we showed that knockdown of DJ-1 resulted in mitochondrial dysfunction, including a decrease in active mitochondrial mass, complex I deficits, and inhibition of cellular adenosine 5′-triphosphate (ATP) content in the dopaminergic neuron-like cells PC12 and SH-SY5Y. Additionally, loss of DJ-1 impaired Akt signaling, and reduced nuclear translocation of Nrf2, thereby inhibiting activity of Nrf2-regulated downstream antioxidant enzymes such as heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1. Moreover, DJ-1 knockdown also led to a significant increase in the mitochondrial reactive oxygen species, and then promoted the activation of JNK pathways. Furthermore, oxidative stress and mitochondrial dysfunction induced by knockdown of DJ-1 were blocked by a JNK inhibitor, which confirmed the important role of JNK activation in mitochondrial dysfunction. In conclusion, the present study indicates that DJ-1 knockdown leads to mitochondrial dysfunction in dopaminergic neuron-like cells, at least in part, through suppressing the Akt/GSK3β pathway and impairing the oxidative stress response, as well as through the subsequent increased JNK activation in dopaminergic neuron-like cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call