Abstract

The activity of glutamate dehydrogenase (GDH), an important enzyme in carbon and nitrogen metabolism, is routinely assayed by photometry. The RNA synthetic activity of the enzyme provides new technologies for assaying its activity. The enzyme was made to synthesize RNAs in the absence of DNA and total RNA but with different mixes of the four nucleoside triphosphates (NTPs) in order to investigate the RNA characteristics. RNase VI (hydrolyzes base-paired residues) digested the poly (U,A) RNA completely because the U and A residues were evenly distributed to produce many base-paired regions. Therefore, the synthesis of RNA by GDH was by random addition of NTPs. The RNA synthetic activity of the enzyme was at least 50-fold more active in the deamination than in the amination direction, thus providing a robust technology for assay of the enzyme's activity. cDNAs prepared from the RNAs were subjected to restriction fragment differential display polymerase chain reaction analyses. Sequencing of the cDNA fragments showed that some of the RNA synthesized by GDH shared sequence homology with total RNA. Database searches showed that the RNA fragments shared sequence homologies with the G proteins, adenosine triphosphatase, calmodulin, phosphoenol pyruvate (PEP) carboxylase, and PEP carboxykinase, thus explaining the molecular mode of their functions in signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call