Abstract
The group I self-splicing introns act at exon-intron junctions without recognizing a particular sequence. In order to understand splice-site selection, we have developed an assay system based on the Tetrahymena ribozyme to allow the study of numerous 5'-splice-site variants. Cleavage at the correct site requires formation of the correct secondary structure and occurs most efficiently within a 3-base-pair window centered on base pair 5 from the bottom of the P1 stem. Within this window the ribozyme recognizes and cleaves at a "wobble" base pair; the base pair above the cleavage site also influences splicing efficiency. The recognition of RNA structure rather than sequence explains the ability of these transposable introns to splice out of a variety of sequence contexts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.