Abstract

Analysis of gene expression changes across the genome provides a powerful, unbiased tool for gaining insight into molecular mechanisms. We have effectively used RNA sequencing to identify differentially expressed genes in long-lived genetic mutants in C. elegans to advance our understanding of the genetic pathways that control longevity. Although RNA sequencing costs have come down, cost remains a barrier to examining multiple strains and time points with a sufficient number of biological replicates. To circumvent this, we have examined the efficacy of identifying differentially expressed genes by sequencing a pooled RNA sample from long-lived isp-1 mitochondrial mutant worms. We found that sequencing a pooled RNA sample could effectively identify genes that were found to be significantly upregulated in the two individually sequenced RNA-seq experiments. Finally, we compared the genes significantly upregulated in the two individually sequenced RNA-seq experiments to two previous microarray experiments to come up with a high-confidence list of modulated genes in long-lived isp-1 mutant worms. Overall, this work demonstrates that RNA sequencing of pooled RNA samples can be used to identify differentially expressed genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.