Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) gene expression is decreased in vitamin A-deficient (VAD) mice. However, the underlying molecular mechanism at the PEPCK promoter that contributes to this alteration in gene expression remains unexplained and thus serves as the basis for our investigation in this report. Using liver from vitamin A-sufficient (VAS) and VAD mice in the chromatin immunoprecipitation (ChIP) assay, we determined that histones H3 and H4 were in the acetylated or active state in VAS mice at each of the three retinoic acid response elements (RARE1, RARE2 and RARE3) of the PEPCK promoter. The same acetylation pattern was seen in VAD mice, but with relatively lower levels of acetylated H3 and H4 bound at the region encompassing PEPCK RARE1/RARE2. In ChIP assays conducted with an antibody to RNA polymerase II (RNA Pol II), the association of RNA Pol II with PEPCK RARE1/RARE2 was significantly decreased in vitamin A deficiency. The reduction in RNA Pol II association is indicative of an interruption in the direct interactions of RNA Pol II with the PEPCK promoter, with general transcription factors and/or with coregulator molecules that contribute to the activation of the PEPCK gene. These results increase our understanding of the molecular basis for decreased PEPCK gene expression in VAD mice in vivo and offer additional insight into the regulation of other retinoid-responsive genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call