Abstract

The incorporation of labelled dietary palmitic, linoleic, and linolenic acids into neutral (NL) and phospholipids (PL) during the metamorphosis of Pieris brassicae was studied, and the ability of the fat body to incorporate acetate into PL determined. Thirty-three per cent of total lipid in early fifth instar larvae (minus haemolymph) is PL, while the corresponding value in female 4-day pupae is 13·0 per cent and in the fat body of 4-day pupae 6·3 per cent. Incorporation of label into PL was studied more closely and in all cases the label was recovered from phosphatidylcholine (PTC) and phosphatidylethanolamine (PTE). The label from palmitate was also found in sphingomyelin and possibly phosphatidylserine. Specific activity of PL in the case of palmitic and linolenic acids was greatest in late fifth instar larvae. In early fifth instar larvae on palmitic acid-1-14C 39·0 per cent of label was in PTC, 52·8 per cent in PTE, and 2·0 per cent in sphingomyelin. In late fifth instar 45·0 per cent was in PTC, 45·5 per cent in PTE, and 6·5 per cent in sphingomyelin, while in 4-day female pupae 45·2 per cent was in PTC, 41·3 per cent in PTE, and 13·5 per cent in sphingomyelin. The label from linolenic acid only varied a little from early fifth instar to 4-day pupae, 51·8 per cent being in PTC and 48·2 per cent in PTE in early fifth instar larvae. The label from linoleic acid is incorporated in fat body PL almost exclusively in PTC and PTE, 55·8 and 43·2 per cent respectively in 4-day female pupae. Injected acetate is distributed after 1 hr between PTC (58·6 per cent), PTE (24·4 per cent), and sphingomyelin (17·0 per cent). It was concluded that the polyunsaturated acids are proportionately more common in PTE than in other PL types, and that the fatty acids of sphingomyelin are mainly those that the insect is capable of synthesizing from acetate. Palmitic acid is desaturated by Pieris to palmitoleic acid and the latter possibly utilized in PTE to compensate for a deficiency of linolenic acid in the artificial diet. No saturation of linoleic or linolenic acid was found. The rates of PL and NL synthesis during development and the rôle of the investigated fatty acids in the biosynthesis of PL are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call