Abstract

AbstractThe coastal zone of southeast Alaska contains thousands of streams and rivers that drain one of the wettest, carbon‐rich, and most topographically varied regions in North America. Watersheds draining temperate rainforests, peatlands, glaciers, and three large rivers that flow from the drier interior of the Yukon Territory and British Columbia discharge water and dissolved organic carbon (DOC) into southeast Alaskan coastal waters. This area, which we have designated the southeast Alaska drainage basin (SEAKDB), discharges about twice as much water as the Columbia or Yukon Rivers. An understanding of the timing, location, and source of water and DOC guides research to better understand the influence of terrestrial outputs on the adjacent marine systems. Additionally, a spatially extensive understanding of riverine DOC flux will improve our understanding of lateral losses related to terrestrial carbon cycling. We estimate 1.17 Tg C yr−1 of DOC enters the adjacent marine system along with 430 km2 of freshwater that influences estuary, shelf, and Gulf of Alaska hydrology. We estimate that 23% to 66% of the DOC entering coastal waters is bioavailable and may influence metabolism and productivity within the marine system. The combination of the large and spatially distributed water and DOC input, long and complex shoreline, large enclosed estuarine volume, and bounded nearshore coastal currents suggests that the physiographic structure of southeast Alaska may have a significant impact on the metabolism of riverine DOC in coastal marine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call