Abstract
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.
Highlights
According to the Biocides Directive (98/8/EC) [1], biocides are active substances or preparations that are intended to destroy, deter, render harmless and exercise control or prevent the action of any other harmful organism through chemical or biological means
Biocides are classified into 23 different product types, each of which is comprised of multiple subgroups
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is a pesticide used widely in agriculture, silviculture and urban settings. This pesticide can enter surface waters through rainfall runoff, spray drift or atmospheric deposition, subsequently impacting aquatic biota [77]. It is used as a booster biocide in marine paints as one of the chemicals replacing the widely banned organotin fungicides, such as tributyltin, resulting in greater potential for chlorothalonil contamination of marine waters and sediments [78,79]
Summary
According to the Biocides Directive (98/8/EC) [1], biocides are active substances or preparations that are intended to destroy, deter, render harmless and exercise control or prevent the action of any other harmful organism through chemical or biological means. Biofouling is a problem for any structure placed in the aquatic environment It can be controlled through the use of both chemical biocides and non-biocidal technologies [4]. The aquaculture industry makes periodic discharges of wastes from farm activities These waste products include detergents, effluent from net washing, antifoulants, heavy metals and even chemicals, such as drugs [7]. Despite the beneficial effects of the chemicals to aquaculture, they may cause potential harm to aquatic organisms [10,11,12] and even to humans. The aim of this study is to review the main effects and risks of using antifouling biocides in aquaculture on aquatic systems, shellfish, fish and humans
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have