Abstract

This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam. Permanently inundated lands and temporary flood zones are analyzed by combining sea level rise scenarios for 2050 with simulated storm surge levels for the 100-year event. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 49 years. Approximately 10% of the Hanoi region’s GDP is vulnerable to permanent inundation due to sea level rise, and more than 40% is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats.

Highlights

  • By combining a range of sea level rise (SLR) scenarios for 2050 with the potential maximum storm surge level for the current 100-year storm, this paper analyzes permanently inundated lands and temporary flood zones in the Red River delta region of Vietnam

  • This analysis demonstrates a proof of concept for storm surge and SLR risk analysis for a region of Vietnam

  • Several data limitations were identified, a method was developed for assessing spatial risk from SLR and storm surges with existing data in the Red River delta region of Vietnam

Read more

Summary

Introduction

By combining a range of sea level rise (SLR) scenarios for 2050 with the potential maximum storm surge level for the current 100-year storm, this paper analyzes permanently inundated lands and temporary flood zones in the Red River delta region of Vietnam. The approach is consistent with methods generally applied to estimate the long-term hazards and related risks needed for coastal planning and decision-making [1]. US Geological Survey’s HydroSHEDS 90-m elevation data is used to identify the inundated and flooded areas [2]. Three SLR scenarios are considered, each with a different level of rise: low (0.25 m), medium (0.33 m) and high (0.5 m). The sea, lake, and overland surge from hurricanes (SLOSH) model is used to define the potential maximum surge for simulated storm activity in the study area [3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call