Abstract

Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are persistent in the environment and may pose human health hazards. Regulatory agencies are considering restrictions and bans of PFAS; however, little data exists for informed decisions. Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally diverse PFAS from 8 groups using human-induced pluripotent stem cell-derived hepatocytes and cardiomyocytes, and tested concentration-response effects on cell function and gene expression. Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed for 8 of the 26 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent but lacked substantial group-specific effects. In hepatocytes, we found up-regulation of stress-related and extracellular matrix organization pathways, and down-regulation of fat metabolism. In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic and transcriptomic points of departure and compared them to predicted PFAS exposures. The conservative estimates for bioactivity and exposure were used to derive bioactivity-to-exposure ratio (BER) for each PFAS, most (23 of 26) PFAS had BER > 1. Overall, these data suggests that structure-based grouping of PFAS may not be sufficient to predict their biological effects. Testing of individual PFAS may be needed for scientific-based decision-making. Our proposed strategy of using two human cell types and considering phenotypic and transcriptomic effects, combined with dose-response analysis and calculation of BER, may be used for PFAS prioritization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call