Abstract

AbstractThis paper considers risk-sensitive average optimization for denumerable continuous-time Markov decision processes (CTMDPs), in which the transition and cost rates are allowed to be unbounded, and the policies can be randomized history dependent. We first derive the multiplicative dynamic programming principle and some new facts for risk-sensitive finite-horizon CTMDPs. Then, we establish the existence and uniqueness of a solution to the risk-sensitive average optimality equation (RS-AOE) through the results for risk-sensitive finite-horizon CTMDPs developed here, and also prove the existence of an optimal stationary policy via the RS-AOE. Furthermore, for the case of finite actions available at each state, we construct a sequence of models of finite-state CTMDPs with optimal stationary policies which can be obtained by a policy iteration algorithm in a finite number of iterations, and prove that an average optimal policy for the case of infinitely countable states can be approximated by those of the finite-state models. Finally, we illustrate the conditions and the iteration algorithm with an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.