Abstract

BackgroundHepatocellular carcinoma (HCC) as a common tumor has a poor prognosis. Recently, a combination of atezolizumab and bevacizumab has been recommended as the preferred regimen for advanced HCC. However, the overall response rate of this therapy is low. There is an urgent need to identify sensitive individuals for this precise therapy among HCC patients.MethodsThe Wilcox test was used to screen the differentially expressed immune-related genes by combining the TCGA cohort and the Immunology Database. Univariate and multivariate Cox regression analysis were used to screen the immune gene pairs concerning prognosis. A predictive model was constructed using LASSO Cox regression analysis, and correlation analysis was conducted between the signature and clinical characteristics. ICGC cohort and GSE14520 were applied for external validations of the predictive risk model. The relationship between immune cell infiltration, TMB, MSI, therapeutic sensitivity of immune checkpoint inhibitors, targeted drugs, and the risk model were assessed by bioinformatics analysis in HCC patients.ResultsA risk predictive model consisting of 3 immune-related gene pairs was constructed and the risk score was proved as an independent prognostic factor for HCC patients combining the TCGA cohort. This predictive model exhibited a positive correlation with tumor size (p < 0.01) and tumor stage (TNM) (p < 0.001) in the chi-square test. The predictive power was verified by external validations (ICGC and GSE14520). The risk score clearly correlated with immune cell infiltration, MSI, immune checkpoints, and markers of angiogenesis.ConclusionsOur research established a risk predictive model based on 3 immune-related gene pairs and explored its relationship with immune characteristics, which might help to assess the prognosis and treatment sensitivity to immune and targeted therapy of HCC patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.