Abstract
PurposeTo develop and validate a nomogram for predicting the overall survival (OS) of ovarian cancer patients with liver metastases (OCLM).MethodsThis study identified 821 patients in the Surveillance, Epidemiology, and End Results (SEER) database. All patients were randomly divided in a ratio of 7:3 into a training cohort (n = 574) and a validation cohort (n = 247). Clinical factors associated with OS were assessed using univariate and multivariate Cox regression analyses, and backward stepwise regression was applied using the Akaike information criterion (AIC) to select the optimal predictor variables. The nomogram for predicting the OS of the OCLM patients was constructed based on the identified prognostic factors. Their prediction ability was evaluated using the concordance index (C-index), receiver operating characteristic (ROC) curve, calibration curve, and decision curves analysis (DCA) in both the training and validation cohorts.ResultsWe identified factors that predict OS for OCLM patients and constructed a nomogram based on the data. The ROC, C-index, and calibration analyses indicated that the nomogram performed well over the 1, 2, and 3-year OS in both the training and validation cohorts. Additionally, in contrast to the External model from multiple perspectives, our model shows higher stability and accuracy in predictive power. DCA curves, NRI, and IDI index demonstrated that the nomogram was clinically valuable and superior to the External model.ConclusionWe established and validated a nomogram to predict 1,2- and 3-year OS of OCLM patients, and our results may also be helpful in clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.