Abstract

Release of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. Increasing uranium mining activities potentially increase the risks linked to radiation exposure. As a tool to evaluate these risks, a geochemical inverse modeling approach was developed to estimate the water- mineral interaction in the presence of uranium. Our methodology is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reaction by reconstructing the chemical evolution of the interacting fluids. We found that the reactive surface area of parent-rock minerals changes over several orders of magnitude during the investigated reaction time. We propose that the formation of coatings on dissolving mineral surfaces significantly reduces reactivity. Our results show that negatively charged uranium complexes decrease when alkalinity and rock buffer capacity is similarly lower, indicating that the dissolved carbonate is an important parameter impacting uranium mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.