Abstract

This paper focuses on a virtual power plant (VPP) implementation strategy for smart local energy communities (SECs) with energy service providers. It is difficult to balance energy in the implementation stage due to uncertainties in demand and resources. Therefore, VPP implementation was modeled using the risk factor of energy balance. Using this risk factor, it was shown that the temporal correlation between demand and resources was the dominant factor involved in VPP implementation. Based on this, two risk-based VPP implementation strategies are proposed: an optimization-based strategy and a simple strategy that is solved in an iterative way. To minimize VPP implementation costs, the proposed strategies select the resources that have high correlation coefficients with demand and low correlation coefficients with other resources. Experimental results using real data sets show that the proposed strategies based on the risk factor are effective means of VPP implementation for commercial and residential SECs. The results imply that VPPs for commercial SECs are possible when PV is used as the main resource and is supplemented by wind, and it is effective to configure VPPs for residential SECs using wind according to the correlation between demand and resources.

Highlights

  • Experimental results using real data sets show that the proposed strategies based on the risk factor are effective means of virtual power plant (VPP) implementation for commercial and residential smart local energy communities (SECs)

  • The results imply that VPPs for commercial SECs are possible when PV is used as the main resource and is supplemented by wind, and it is effective to configure VPPs for residential SECs using wind according to the correlation between demand and resources

  • This paper proposed VPP implementation strategies, considering their risk

Read more

Summary

Introduction

VPP implementation costs, the proposed strategies select the resources that have high correlation coefficients with demand and low correlation coefficients with other resources. Experimental results using real data sets show that the proposed strategies based on the risk factor are effective means of VPP implementation for commercial and residential SECs. The results imply that VPPs for commercial SECs are possible when PV is used as the main resource and is supplemented by wind, and it is effective to configure VPPs for residential SECs using wind according to the correlation between demand and resources. The power sector, responsible for the generation of electricity and heat, produces the most greenhouse gas emissions at about 30% of total global greenhouse gas emissions [1]. The use of renewables as generation resources is rapidly increasing.

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.