Abstract

Abstract The optimal placement of sensors for burst/leak detection in water distribution systems is usually formulated as an optimisation problem. In this study three different risk-based functions are used to drive optimal location of a given number of sensors in a water distribution network. A simple function based on likelihood of leak non-detection is compared with two other risk-based functions, where impact and exposure are combined with the leak detection likelihood. The impact is considered proportional to the demand water volume while the exposure is related to the importance of the connections and it is evaluated in social, economic or safety terms. The methods are applied to a district metered area of the Harrogate network by means of a modified EPANET model, to take into account the pressure-driven functioning conditions of the system. The results show that the exposure can lead to a different sensor location ranking with respect to other criteria used and hence the proposed methodology can represent a useful tool for water system managers to distribute the sensors in the network, complying with hydraulic, social and economical requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call