Abstract
Distributed energy resources (DERs) play a key role in the deregulated power systems with environmental concerns. Their scales and the uncertainty pertaining to intermittent generation of renewable resources are the major challenges of participating in wholesale electricity markets. The concept of virtual power plant (VPP) makes their integration possible and also allows covering the risk due to uncertainties. It yields a surplus profit in comparison to profits made by uncoordinated DERs. In this paper, using a novel stochastic programming approach, the participation of a VPP in the day-ahead market (DAM) and the balancing (real-time) market (BM) is considered. The uncertainties involved in the electricity price, generation of renewables, consumption of loads, and the losses allocation are taken into account. The desired risk-aversion level of each independent DER owner is used to compute the conditional value-at-risk (CVaR) as a well-known risk measure. The role of each DER in covering the risk and making the total profit is evaluated. The Nucleolus and the Shapley value methods as the cooperative Game theory approaches are implemented to allocate VPP's profit to the DERs. The results of a numerical study are presented and concluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.