Abstract
Previously, an extensive study has been carried out in order to assess the ignition sensitivity and explosivity of aluminum nanopowders. It showed notably that, as the particle size decreases, minimum ignition temperature and minimum ignition energy decrease, indicating higher potential inflammation. However, the explosion severity decreases for diameters lower than 1μm. As a consequence, this study leads to the conclusions that the ignition sensitivity and explosion severity of aluminum nanopowders may be affected by various phenomena, as pre-ignition, agglomeration/aggregation degree and the intrinsic alumina content. The presence of wall-quenching effects and the predominance of radiation compared to conduction in the flame propagation process have to be discussed to ensure the validity of the 20L sphere and of the results extrapolation. Based on the peculiar behaviours that had been previously highlighted, a specific risk analysis has been developed in order to assess the fire and explosion risks of such materials. It has been applied to an industrial plant of aluminum nanopowders production. The hazard identification and the consequence modelling steps, especially the quantification of the likelihood and consequences, have been designed specifically. The application of this method has led to the definition of the most adequate safety barriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.