Abstract

Etoxazole is among the systemic pesticides with acaricidal and insecticidal characteristics. This paper reports the first evaluation of the toxic effects of Etoxazole on Allium cepa L. Etoxazole solutions were applied to three groups formed from A. cepa bulbs at 0.125 mL/L, 0.25 mL/L and 0.5 mL/L doses, respectively. The control group was treated with tap water throughout the experimental period. The toxic effects of Etoxazole became more apparent as the dose of Etoxazole was increased. The growth-limiting effect was most pronounced in the highest dose group with approximately 29%, 70% and 58.5% reductions in germination percentage, root elongation and weight gain, respectively. The genotoxic effect of Etoxazole was most severe in the 0.5 mL/L dose group. In this group, the mitotic index decreased by 30% compared to the control group, while the micronucleus frequency increased to 45.3 ± 3.74. The most observed aberrations were fragment, vagrant chromosome, sticky chromosome, unequal distribution of chromatin, bridge, reverse polarization and nucleus with vacuoles. The malondialdehyde level showed a gradual increase with increasing Etoxazole doses and reached 2.7 times that of the control group in the 0.5 mL/L Etoxazole applied group. Catalase and Superoxide dismutase activities increased in the groups exposed to 0.125 mL/L and 0.25 mL/L Etoxazole with dose dependence and decreased abruptly in the group treated with 0.5 mL/L Etoxazole. Etoxazole triggered meristematic cell damages, such as epidermis cell damage, thickening of cortex cell walls, flattened cell nucleus and indistinct transmission tissue. Considering the versatile toxicity induced by Etoxazole, we announce that this chemical has the potential to cause serious damage to non-target organisms. It should be noted that the higher the dose of exposure, the more severe the level of damage. This study will be an important reminder to limit the indiscriminate use of this highly risky agrochemical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.