Abstract

In this paper, we deal with the estimation of two widely used risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES) in a cryptocurrency context. To face the presence of regime switching in the cryptocurrency volatilities and the dynamic interconnection between them, we propose a Monte Carlo-based approach using heteroskedastic factor analysis and hidden Markov models (HMM) combined with a structured variational Expectation-Maximization (EM) learning approach. This composite approach allows the construction of a diversified portfolio and determines an optimal allocation strategy making it possible to minimize the conditional risk of the portfolio and maximize the return. The out-of-sample prediction experiments show that the composite factorial HMM approach performs better, in terms of prediction accuracy, than some other baseline methods presented in the literature. Moreover, our results show that the proposed methodology provides the best performing crypto-asset allocation strategies and it is also clearly superior to the existing methods in VaR and ES predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.