Abstract
Emerging organic contaminants (EOCs) have been widely studied in landfill leachates but not in the surrounding environment of landfills. In this study, two sampling campaigns were conducted to determine 45 EOCs in landfill leachates and environmental samples near a landfill in East China. Our study focused on the seasonal occurrence and spatial distribution of the target EOCs, as well as their ecological risks. The results showed 13 out of 45 EOCs were detectable and achieved individual concentrations that ranged from 2.0 to 5080ng/L in the landfill leachates. Most of the detected EOCs exhibited higher concentrations in the leachates collected in summer than in winter. Effective removal of the EOCs by a two-stage disc tube reverse osmosis (DTRO) system led to a significant reduction in their concentration levels (< LOQ ~ 49ng/L) in treated leachates. Eight EOCs (< LOQ ~ 62.7ng/L) were detected in the groundwater adjacent to the landfill and had a similar composition pattern to raw leachates. The contamination levels of the target EOCs in groundwater decreased with the distance of sampling sites from the landfill. In soil samples, the occurrence of target EOCs was not consistent with raw or treated landfill leachates. Spatially, no apparent difference in the EOC concentrations was observed in the soil nearby the landfill. Crop plants sorbed the EOCs contained in soil (< LOQ ~ 30.4ng/L), but they were not able to bioconcentrate the contaminants in either roots or edible parts. Risk assessment suggested that the individual EOC likely posed medium to high risks to aquatic organisms in groundwater while negligible impacts to human health through consumption of vegetables. To the best of our knowledge, this is the first report on the contribution of landfill leachates to EOC contamination in both aquatic and soil environments in East China. Our findings emphasized the importance of investigating EOCs in landfill leachates and accumulative environmental risks of EOCs in the neighboring environment of landfills in China.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have