Abstract

Despite extensive research progress in the recent past, the data regarding foliar uptake of heavy metals, associated biophysiochemical changes inside plants and possible health hazards are limited. This study determined the effect of foliar application of lead oxide nanoparticles (PbO-NPs) on lead (Pb) accumulation, physiological and biochemical changes inside spinach plants and associated health risks. A green method was used to prepare PbO-NPs using coconut water. Scanning electron microscopy (SEM) showed the preparation of smooth, unwrinkled, granular and spherical PbO-NPs. Spinach leaves were exposed via foliar application to three concentrations of PbO-NPs (0, 10 and 50 mg/plant). Foliar PbO-NPs application resulted in a significant accumulation of Pb in leaves (42.25μgg-1), with limited translocation towards root tissues (4.46μgg-1). This revealed that spinach can accumulate considerable amount of Pb via foliar uptake. Lead accumulation inside spinach caused a significant decrease in pigment contents (38%) and dry weight (67%). After foliar uptake, Pb caused several-fold increase in the activities of catalase and peroxidase. However, foliar PbO-NPs did not induce significant changes in H2O2 production, lipid peroxidation and superoxide dismutase activity. Application of PbO-NPs (50 mg/plant) showed possible health risks (non-carcinogenic) due to ingesting Pb-contaminated leaves of spinach. It is proposed that atmospheric contamination and foliar deposition of metal-PM can seriously affect vegetable growth and can provoke health issues due to ingestion of metal-enriched vegetables. Therefore, atmospheric levels of heavy metals need to be monitored on a regular basis to avoid their food chain contamination and possible human exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.