Abstract
Layered double hydroxides nanoparticles (LDH-NPs) are increasingly studied as drug nanocarriers for cellular delivery. Nevertheless, stable functionalizations providing targeting capabilities without disrupting the size of the carriers are necessary to achieve optimized performance. Here, LDH-NPs were functionalized with risedronate (Ris) to improve the osteotropicity of the nanocarriers without altering the nanosized distribution. Ris is a nitrogen containing bisphosphonate with rich acid-base reactivity that can lead Ris functionalized LDH-NPs also as pH-responsive drug nanocarriers. The current work is focused on the strategy to synthesize functionalized LDH-NPs with a maximum adsorption and a minimum intercalation of Ris while maintaining their nanosize. The speciation and interactions of Ris at the surface of LDH-NPs were analyzed using Raman microscopy whereas the functionalization stability and size distribution were checked in simulated biological media. Finally, pH sensitivity and hydroxyapatite binding capacity of Ris functionalized LDH-NPs were evaluated. HRis3− anions were incorporated to the LDH-NPs surface with high affinity providing with a negative zeta potential that controlled the size at around 100nm. The size of Ris functionalized LDH-NPs was not affected by the high ionic strength or the presence of proteins in simulated biological media. Further, the functionalization was stable against protein adsorption and anionic exchange. As expected, Ris functionalized LDH-NPs are bioresponsive with a high sensitivity for pH changes and specific affinity for hydroxyapatite, which makes them appealing drug nanocarriers for new bone therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.