Abstract

Protein secondary structure prediction (PSSP) is an important and challenging task in protein bioinformatics. Protein secondary structures (SSs) are categorized in regular and irregular structure classes. Regular SSs, representing nearly 50% of amino acids consist of helices and sheets, whereas the remaining amino acids represent irregular SSs. [Formula: see text]-turns and [Formula: see text]-turns are the most abundant irregular SSs present in proteins. Existing methods are well developed for separate prediction of regular and irregular SSs. However, for more comprehensive PSSP, it is essential to develop a uniform model to predict all types of SSs simultaneously. In this work, using a novel dataset comprising dictionary of secondary structure of protein (DSSP)-based SSs and PROMOTIF-based [Formula: see text]-turns and [Formula: see text]-turns, we propose a unified deep learning model consisting of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) for simultaneous prediction of regular and irregular SSs. To the best of our knowledge, this is the first study in PSSP covering both regular and irregular structures. The protein sequences in our constructed datasets, RiR6069 and RiR513, have been borrowed from benchmark CB6133 and CB513 datasets, respectively. The results are indicative of increased PSSP accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.