Abstract

Rip currents have an important control on the exchange of water and advected materials such as sediment and pollutants, between the surf zone and inner shelf. Concurrent in situ Eulerian and Lagrangian (GPS drifter) data of surf zone waves and currents were combined with video data on wave breaking patterns over the inner and outer bars on a high energy, double-barred beach. The data collectively show how the occurrence of wave breaking over the outer bar changes the behavior of a channel rip current, and the exchange process. On both days, there was a prominent clockwise eddy in the surf zone, for which the seaward-heading portion formed a rip current in a well-defined channel rip, incised into the inner bar. Exit rate (measured with drifters) from the surf zone to inner shelf decreased significantly with increased wave breaking over the outer bar, from 71% exits to 6% over the two days. Exit rate appears to be driven by the balance between wave breaking over the inner and outer bars and pulsing of currents within the surf zone. Under higher wave conditions, there were stronger pulsations in surf zone currents and more surf zone exits. However, higher wave conditions caused wave breaking over the outer bar. This breaking increases vorticity around the outside of the surf zone eddy, which increases surf zone retention. This is in contrast to previous studies showing that vorticity is highest at the center of surf zone eddies. Under such conditions, drifter exits were rare, and occurred due to vortex shedding. During lower incident wave conditions, eddy vorticity was lower, and drifters could relatively freely exit the surf zone. This is one of the few studies that investigate surf zone circulation on a high energy, double-barred beach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call