Abstract
The drop-and-dry is a common technique allowing for creation of periodic nanoparticle (NP) structures for sensing, photonics, catalysis, etc. However, the reproducibility and scalability of this approach for fabrication of NP-based structures faces serious challenges due to the complexity of the simple, at first glance, evaporation process. In this work we study the effect of the spatial confinement on the NP self-assembly under slow solvent evaporation, when the air-liquid-substrate contact line (CL) expands from the center towards the walls of a cylindrical cell, forming a toroid. Using in situ video monitoring of the stick-slip CL motion, we find regular hydrodynamic perturbations in the meniscus, and reveal fine details of the formation of quasiperiodic rings of close packed NP layers. We report that drying of the toroidal NP droplet has a number of important differences from drying of the classical hemispherical colloidal drops. In toroidal drops we observe linear-in-time average meniscus motion, in contrast to the hemispherical drops where the meniscus moves as a square root of time. While both droplet geometries produce NP ring patterns, the ring width for the toroidal drop decreases with increasing ring radius, while it decreases with decreasing the radius of the hemispherical drop. We suggest that free ligands are the main cause of the Marangoni instabilities driving the periodic vorticity in the meniscus. In addition, we show that the usually ignored contact line tension may yield a considerable contribution to the CL pinning causing the CL slip-stick motion and the ring formation.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have