Abstract
Preparative-scale monolithic columns up to 433.5 mL in volume were prepared via transition metal-catalyzed ring-opening metathesis polymerization (ROMP) from norborn-2-ene (NBE) and trimethylolpropane-tris(5-norbornene-2-carboxylate) (CL) using the 1(st)-generation Grubbs initiator RuCl(2)(PCy(3))(2)(CHPh) (Cy = cyclohexyl) (1) in the presence of a macro- and microporogen, i.e. of 2-propanol and toluene. To prepare large-volume monoliths, bulk polymerizations were completed within borosilicate or PEEK column formats with diameters in the range of 3 to 49 mm. The pore structure of the large-volume monoliths was investigated by electron microscopy and inverse-size exclusion chromatography (ISEC), respectively. Monolithic columns with inner diameters (I.D.s) in the range of 10-49 mm were tested for the separation of a mixture of five proteins, i.e., insulin, cytochrome C, lysozyme, conalbumin, and β-lactoglobulin. Preparative separation of these proteins was achieved within less than 12 min in a 433.5 mL monolithic column by applying gradient elution in the RP-HPLC mode. Furthermore, weak and strong anion exchangers were prepared via post-synthesis grafting of bicyclo[2.2.1]hept-5-en-2-yl-methyl-N,N-dimethylammonium hydrochloride (4) and bicyclo[2.2.1]hept-5-en-2-ylmethyl-N,N,N-trimethylammonium iodide (5), respectively. The weak and strong anion exchangers were used for the preparative-scale separation of 5'-phosphorylated oligodeoxythymidylic acid fragments of d[pT](12-18) at pH values ranging from 5 to 9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.