Abstract

The article investigates capabilities of digital techniques to improve measurement accuracy of dithering ring laser gyro (DRLG) in detecting constant rotation rate over short time intervals. An array of the GL-1 device output within a LG triad to measure the vertical component of the angular rate of rotation of the Earth in the laboratory setting is selected as the object of study. The selected time of a single measurement is 2 minutes, and as a full standard deviation error of measurement is selected the magnitude at least 0.002 / min. The objective of this study is to develop and underpin a new effective technique of LG digital information processing to enable providing an appropriate accuracy to meet modern requirements with reducing measurement time of a constant rate Ωz component. The specific objectives are the comparative analysis of the precision capabilities of the known techniques over limited measurement time intervals, development and support of new, more efficient technique of digital information processing of dithering ring LG, and experimental verification and evaluation of effectiveness of the technique proposed. The article presents a comparative error analysis of practically applied digital techniques such a simple averaging method, Hamming method, and method of conditional sample of regression lines with the proposed technique of of the output signal of the image N. To compare the techniques were used the real digital processing device output data taken at a frequency of 400 Hz over 94 two-minute measurement intervals after the device has been switched on. The proposed LG output image recognition technique enables us to reach about three times higher measuring accuracy over two-minute interval as compared to the known techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.