Abstract

Abstract The results of the theoretical consideration of stochastic resonance in overdamped bistable oscillators are given. These results are founded not on the model of two states as in [McNamara B, Wiesenfeld K. Theory of stochastic resonance. Phys Rev A 1989;39:4854–69], but on splitting of motion into regular and random and the rigorous solution of the Fokker–Planck equation for the random component. We show that this resonance is caused by a change, under the influence of noise, of the system’s effective stiffness and damping factor contained in the equation for the regular component. For a certain value of the noise intensity the effective stiffness is minimal, and this fact causes non-monotonic change of the output signal amplitude as the noise intensity changes. It is important that the location of the minimum and its value depend essentially on the signal frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.