Abstract

We derive rigorous cross-property relations linking the effective transverse electrical conductivity cr* and the effective transverse elastic moduli of any transversely isotropic, two-phase ‘fibre-reinforced’ composite whose phase boundaries are cylindrical surfaces with generators parallel to one axis. Specifically, upper and lower bounds are derived on the effective transverse bulk modulus k* in terms of cr* and on the effective transverse shear modulus //* in terms of cr*. These bounds enclose certain regions in the ct*-ac* and cr*-/r* planes, portions of which are attainable by certain microgeometries and thus optimal. Our bounds connecting the effective conductivity cr* to the effective bulk modulus ft* apply as well to anisotropic composites with square symmetry. The implications and utility of the bounds are explored for some general situations, as well as for specific microgeometries, including regular and random arrays of circular cylinders, hierarchical geometries corresponding to effective-medium theories, and checkerboard models. It is shown that knowledge of the effective conductivity can yield sharp estimates of the effective elastic moduli (and vice versa), even for infinite phase contrast.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.