Abstract
When reflection gratings are operated at grazing incidence in the extreme off-plane configuration and the incident beam trajectory is parallel to the grooves, the diffraction into the first order can be more efficient than in the classical orientation. This situation is referred to as the conical diffraction case. In the classical configuration the grooves are perpendicular to the incident beam and thus an efficiency-reducing shadowing effect will be observed at very grazing angles. It was recently shown that a laminar grating could provide symmetric and relatively high efficiencies in conical diffraction for diffraction even of photons with large energies of the order of 4 and 6 keV. For photon energies in the tender X-ray range, accurate computing tools for the calculation of diffraction efficiencies from gratings with simple coatings have not been available. Promising results for this spectral range now require the development of tools for modelling the diffraction efficiency expected in optical instrumentation, in which the provision of high efficiency in the indicated spectral range is mandatory. This is the case when weak sources are to be investigated, like in space science. In this study it will be shown that scalar calculations are not appropriate for this purpose, while newly introduced rigorous calculations based on the boundary integral equation method, implemented in the PCGrate® code, can provide predictions that are in agreement with observed diffraction efficiencies. The agreement is achieved by modelling the exact surface profile. This applies for both the conical diffraction configuration and for the classical in-plane configuration, in which a significantly lower efficiency was obtained. Even though the profile of the presented grating was not perfect, but significantly distorted, the calculations show that efficiency-wise the structure provided already more than 75% of the ideally expected efficiency for conical diffraction. This is a very promising result for further optimization of diffraction gratings for use in the tender X-ray range.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have