Abstract

Using rigid-plastic finite element DEFORMTM 2D software, this study simulates the plastic deformation of complex sheets at the roll gap during the sheet rolling process. Specifically, the study addresses the deformation of complex sheets containing inclusion defects. Under various rolling conditions, the present numerical analysis investigates the damage factor distributions, the void length at the front and rear of the inclusion, the deformation mechanisms, and the stress-strain distributions around the inclusion. The relative influences of the thickness reduction, the roll radii, and the friction factors on the void length at the front and rear of the inclusion, respectively, are systematically examined. Additionally, the correlation between the front and rear void lengths and a series of damage factors is explored. The simulation results appear to verify the suitability of the DEFORMTM 2D software for modeling the rolling of complex sheets containing inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.