Abstract

Using rigid-plastic finite element DEFORM-2D and -3D software, this study simulates the plastic deformation of metal sheets at the roll gap during the sheet rolling process. The study focuses specifically upon the deformation of porous metal sheets containing internal void defects. The present numerical analysis investigates the relative density distributions, the void closure behavior, the deformation mechanisms and the stress–strain distributions around the internal voids for various rolling conditions. The influences on the dimensions of the final void of the thickness reduction, the initial internal void dimensions, the friction factors and the relative density are systematically discussed. The critical rolling conditions also investigated. A series of sheet rolling experiments are performed in order to verify the validity of the simulation results. The current numerical results provide a valuable source of reference for the design of pass schedules for porous metals undergoing rolling processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.