Abstract
The pentablock is a Hartogs domain in C3 over the symmetrized bidisc in C2. The domain is a bounded inhomogeneous pseudoconvex domain, which does not have a C1 boundary. Recently, Agler–Lykova–Young constructed a special subgroup of the group of holomorphic automorphisms of the pentablock, and Kosiński fully described the group of holomorphic automorphisms of the pentablock. The aim of the present study is to prove that any proper holomorphic self-mapping of the pentablock must be an automorphism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have