Abstract
A Coxeter group is rigid if it cannot be defined by two nonisomorphic diagrams. There have been a number of recent results showing that various classes of Coxeter groups are rigid, and a particularly interesting example of a nonrigid Coxeter group has been given by Bernhard Muhlherr. We show that this example belongs to a general operation of ‘diagram twisting’. We show that the Coxeter groups defined by twisted diagrams are isomorphic, and, moreover, that the Artin groups they define are also isomorphic, thus answering a question posed by Charney. Finally, we show a number of Coxeter groups are reflection rigid once twisting is taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.