Abstract

In this paper we prove sharp regularity for a differential inclusion into a set $K\subset\mathbb{R}^{2\times 2}$ that arises in connection with the Aviles-Giga functional. The set $K$ is not elliptic, and in that sense our main result goes beyond \v{S}ver\'{a}k's regularity theorem on elliptic differential inclusions. It can also be reformulated as a sharp regularity result for a critical nonlinear Beltrami equation. In terms of the Aviles-Giga energy, our main result implies that zero energy states coincide (modulo a canonical transformation) with solutions of the differential inclusion into $K$. This opens new perspectives towards understanding energy concentration properties for Aviles-Giga: quantitative estimates for the stability of zero energy states can now be approached from the point of view of stability estimates for differential inclusions. All these reformulations of our results are strong improvements of a recent work by the last two authors Lorent and Peng, where the link between the differential inclusion into $K$ and the Aviles-Giga functional was first observed and used. Our proof relies moreover on new observations concerning the algebraic structure of entropies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.