Abstract
We investigate a large class of elliptic differential inclusions on non-compact complete Riemannian manifolds which involves the Laplace–Beltrami operator and a Hardy-type singular term. Depending on the behavior of the nonlinear term and on the curvature of the Riemannian manifold, we guarantee non-existence and existence/multiplicity of solutions for the studied differential inclusion. The proofs are based on nonsmooth variational analysis as well as isometric actions and fine eigenvalue properties on Riemannian manifolds. The results are also new in the smooth setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.