Abstract

This paper presents a rigid-plastic finite element method for orthogonal cutting process by adopting Lagrange method. The rigid-plastic FEM analysis model is established and the rigid-plastic FEM analysis toolkit was developed. Meanwhile, two relevant key problems are discussed systematically, including the rule of chip-workpiece separation and the criterion of tool-chip separation. At last, a simulation example of planing an aluminium alloy (ZL-301) workpiece was conducted. The effects of the cutting stroke, the tool rake angle and the friction coefficient on chip were observed. The numerical simulation results have a good agreement with their experimental ones. It is indicated that the presented FEM model and algorithm are efficient and correct.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.