Abstract

Due to its challenging manufacturing and intricate morphology, the aluminum alloy transmission intermediate shell used in vehicle transmission has been the focus of many academic studies. In this study, the three-dimensional cutting model is condensed to a two-dimensional cutting model and utilized to simulate the finishing process of an aluminum alloy workpiece using the finite element modeling program DEFORM-3D. Through orthogonal testing and range analysis, the impact of integral end mill side edge parameters on cutting performance was investigated. It is determined that tool chamfering has a greater impact on cutting performance than tool rake and relief angles, that chamfering width has the most impact on cutting force, and that chamfering angle has the greatest impact on cutting temperature. The workpiece's surface roughness is tested during a cutting experiment, and an analysis of the data reveals that the finite element simulation model is accurate and the orthogonal test method is reasonable. The tool chamfer has a greater impact on roughness than the tool rake angle and relief angle. The tool settings are further optimized using the firefly method. By examining the data, it is determined that the prediction model is correct and the optimization model is reasonable. The cutting efficiency is higher and the surface quality is better when the chamfer width is 0.17 mm and the chamfer angle is 7.3° or 18.3°. Therefore, optimizing the side edge parameters of the integral end mill during the finishing process of a thin-walled aluminum alloy shell has practical technical value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call